## Metal-Metal, Metal-Ligand, and Ligand-Ligand Interactions in $[Mo_2(O_2CH)_4]$ and $[Mo_2C1_8]^{4-}$

By JOE G. NORMAN, JUN.\* and HAROLD J. KOLARI

(Department of Chemistry, University of Washington, Seattle, Washington 98195)

Summary Comparison of calculated electronic structures for  $[Mo_2(O_2CH)_4]$  and  $[Mo_2Cl_8]^{4-}$  reveals two important types of interactions between the Mo–Mo and Mo–ligand bonds.

WE present here results of an SCF-X $\alpha$ -SW calculation<sup>1</sup> for molybdenum(II) formate, which typifies the dinuclear carboxylates, the largest known class of compounds exhibiting strong metal-metal bonding. Although the

calculated results for  $[Mo_2(O_2CH)_4]$  in many ways resemble those which we recently reported<sup>2</sup> for  $[Mo_2Cl_8]^{4-}$ , the comparison reveals two remarkable features of the relationship between metal-metal and metal-ligand bonding in dinuclear molecules of  $D_{4h}$  symmetry, one of which has structural implications.

Figure 1 compares SCF valence energy levels of  $[Mo_2-(O_2CH)_4]$  and  $[Mo_2Cl_8]^{4-}$  having more than 20% metal character. The energy ordering and % metal vs. ligand

character of the levels are qualitatively similar for the two molecules, except for the partitioning of Mo-Mo  $\sigma$  and  $\pi$  bonding among the different  $a_{1g}$  and  $e_u$  levels, respectively. In  $[Mo_2Cl_8]^{4-}$ , most of the  $\sigma$  and  $\pi$  bonding is found in the upper  $4a_{1g}$  and  $5e_u$  pair of orbitals, while in  $[Mo_2(O_2CH)_4]$  the main  $\sigma$  and  $\pi$  levels are the lower energy pair (again  $4a_{1g}$  and  $5e_u$ ). In this respect  $[Mo_2(O_2CH)_4]$  resembles  $[Re_2Cl_8]^{2-3}$  more than  $[Mo_2Cl_8]^{4-}$ .



FIGURE 1. Valence energy levels of  $[Mo_2(O_2CH)_4]$  and  $[Mo_2Cl_8]^{4-}$ with > 20 % Mo character. Each  $[Mo_2Cl_8]^{4-}$  level has been stabilized by -0.16 hartree to make the energy of the highest occupied  $2b_{2g}$  level the same for both molecules.

This difference is explicable in terms of the influence of Mo-ligand bonding on the Mo-Mo interaction, as revealed by contour maps of relevant wavefunctions. Some Moligand  $\pi$  interaction is present in most of the  $a_{1g}$  and  $e_u$ levels in both molecules; if this  $\pi$  bonding is interior, *i.e.* on the side of the Mo-ligand direction near the Mo-Mo bond, its presence 'steers' charge into the region between the metals and thus enhances Mo-Mo bonding and Mo character in the level; if the  $\pi$  bonding is exterior, it has the opposite effect. The wavefunction maps show that in both molecules the  $a_{1g}$  or  $e_u$  levels with predominantly metal and ligand character are, respectively, the ones where interior and exterior metal-ligand  $\pi$  bonding dominate. Thus the differing level distribution of Mo-Mo  $\sigma$  and  $\pi$  bonding is at least partially due to the differences in ligand-orbital hybridization between the HCO<sub>2</sub> and 2-Cl systems.

Figure 2 is the wavefunction map for the lower energy

 $5e_u$  level of  $[Mo_2(O_2CH)_4]$ , illustrating the interior type of Mo-O $\pi$  bonding. It also exemplifies an even more interesting aspect of the relationship between metal-metal and metal-ligand bonding, namely the merging of the interior



FIGURE 2. Contour map of the  $5e_u$  level wavefunction for  $[Mo_2(O_2CH)_4]$ . The contour values and area covered are the same as for Fig. 3 in ref. 2.

Mo-O  $\pi$  bonds on the two halves of the dimer with each other and the metal-metal bond, giving rise to a multicentre interaction which, in particular, is *attractive* between the two oxygen atoms of the same carboxylate ligand. This phenomenon is also seen in other formate levels and in  $[Mo_2Cl_g]^{4-}$  (see, *e.g.*, Fig. 2 of ref. 2), but is overall stronger in the formate. Consistently, the Cl-Cl distance across the Mo-Mo bond in  $[Mo_2Cl_g]^{4-}$  is  $3\cdot36(2)$  Å,<sup>4</sup> considerably shorter than the van der Waals contact of  $3\cdot60$  Å.

Such attractive ligand-ligand interactions in an M<sub>2</sub>L<sub>8</sub> molecule will only be important if the ML<sub>4</sub> units are eclipsed. The eclipsed conformation invariably observed even for nonbridged  $d^4-d^4$  dimers has always been explained as due to metal-metal  $\delta$  bonding,<sup>5</sup> and our calculations on both  $[Mo_2Cl_8]^{4-}$  and  $[Mo_2(O_2CH)_4]$  confirm the importance of this effect.<sup>2</sup> However, ligand-ligand interactions of the above type may also contribute to the stability of the eclipsed vs. staggered arrangement. The structures of  $d^5-d^5$  dimers, where the antibonding  $\delta^*$  orbital should be filled<sup>6</sup> and  $\delta$ bonding therefore absent, should show whether such interactions are strong enough by themselves to force the eclipsed conformation. One such structure, that of [Re2-Cl<sub>4</sub>(PEt<sub>3</sub>)<sub>4</sub>], is known,<sup>7</sup> and it is eclipsed. Unfortunately, in this case the steric requirements of the bulky phosphine ligands may require the eclipsed arrangement. We hope  $d^{5}-d^{5}$  dimers will be synthesised where steric factors are unimportant to provide a clear-cut test of these ideas.

We have prepared  $[Mo_2(O_2CH)_4]$  directly from  $[Mo_2(O_2-CMe)_4]$  and formic acid, a simpler procedure than that described previously.<sup>8</sup> Its electronic spectrum is virtually identical to that of all other molybdenum(II) carboxylates;<sup>9</sup>

hence our theoretical analysis should be equally valid for the whole series. These results will be presented in more detail after completion of calculations necessary to provide a thorough comparison of theoretical and experimental ionization<sup>10</sup> and transition energies. Preliminary indications are that the lowest electronic transition near 23,000  ${\rm cm^{-1}}$  is a forbidden  $\delta \to \pi^*$  or  $\pi \to \delta^*,$  rather than an

We thank the donors of the A.C.S.-Petroleum Research Fund and the Research Corporation for support.

(Received, 2nd June 1975; Com. 625.)

- <sup>1</sup> (a) K. H. Johnson, Adv. Quantum Chem., 1973, 7, 143; (b) J. G. Norman, jun., J. Chem. Phys., 1974, 61, 4630. <sup>3</sup> J. G. Norman, jun. and H. J. Kolari, J. Amer. Chem. Soc., 1975, 97, 33. <sup>3</sup> A. P. Nortola, J. W. Moskowitz, N. Rösch, C. D. Cowman, and H. B. Gray, Chem. Phys. Letters, 1975, 32, 283.

- J. V. Brencic and F. A. Cotton, Inorg. Chem., 1970, 9, 346.
   F. A. Cotton, Chem. Soc. Rev., 1975, 4, 27.
- Preliminary SCF-Xa-SW results for hypothetical Re<sub>2</sub>Cl<sub>8</sub><sup>4-</sup> confirm this occupation scheme (A. P. Mortola, personal communication). <sup>7</sup> F. A. Cotton, B. A. Frenz, J. R. Ebner, and R. A. Walton, J.C.S. Chem. Comm., 1974, 4.
  <sup>8</sup> E. Hochberg, P. Walks, and E. H. Abbott, Inorg. Chem., 1974, 13, 1824; J. Co-ordination Chem., 1974, 3, 255.
  <sup>9</sup> L. Dubicki and R. L. Martin, Austral. J. Chem., 1969, 22, 1571.
  <sup>10</sup> J. C. Green and A. J. Hayes, Chem. Phys. Letters, 1975, 31, 306.